| | avatar.png | 55.43 KB |
| | 1 - 1 - Welcome (7 min).mp4 | 11.95 MB |
| | 1 - 1 - Welcome (7 min).srt | 9.86 KB |
| | 1 - 2 - What is Machine Learning (7 min).mp4 | 9.35 MB |
| | 1 - 2 - What is Machine Learning- (7 min).srt | 10.14 KB |
| | 1 - 3 - Supervised Learning (12 min).mp4 | 13.45 MB |
| | 1 - 3 - Supervised Learning (12 min).srt | 16.82 KB |
| | 1 - 4 - Unsupervised Learning (14 min).mp4 | 16.66 MB |
| | 1 - 4 - Unsupervised Learning (14 min).srt | 29.06 KB |
| | docs_slides_Lecture1.pdf | 3.3 MB |
| | docs_slides_Lecture1.pptx | 4.02 MB |
| | 2 - 1 - Model Representation (8 min).mp4 | 9 MB |
| | 2 - 1 - Model Representation (8 min).srt | 9.92 KB |
| | 2 - 2 - Cost Function (8 min).mp4 | 9.05 MB |
| | 2 - 2 - Cost Function (8 min).srt | 9.86 KB |
| | 2 - 3 - Cost Function - Intuition I (11 min).mp4 | 12.24 MB |
| | 2 - 3 - Cost Function - Intuition I (11 min).srt | 12.14 KB |
| | 2 - 4 - Cost Function - Intuition II (9 min).mp4 | 11.36 MB |
| | 2 - 4 - Cost Function - Intuition II (9 min).srt | 11.17 KB |
| | 2 - 5 - Gradient Descent (11 min).mp4 | 13.5 MB |
| | 2 - 5 - Gradient Descent (11 min).srt | 15.39 KB |
| | 3 - 1 - Matrices and Vectors (9 min).mp4 | 9.56 MB |
| | 3 - 1 - Matrices and Vectors (9 min).srt | 15.88 KB |
| | 3 - 1 - Matrices and Vectors (9 min).txt | 7.08 KB |
| | 3 - 2 - Addition and Scalar Multiplication (7 min).mp4 | 7.46 MB |
| | 3 - 2 - Addition and Scalar Multiplication (7 min).srt | 11.97 KB |
| | 3 - 3 - Matrix Vector Multiplication (14 min).mp4 | 15 MB |
| | 3 - 3 - Matrix Vector Multiplication (14 min).srt | 24.26 KB |
| | 3 - 4 - Matrix Matrix Multiplication (11 min).mp4 | 12.59 MB |
| | 3 - 4 - Matrix Matrix Multiplication (11 min).srt | 20.6 KB |
| | 3 - 5 - Matrix Multiplication Properties (9 min).mp4 | 9.81 MB |
| | 4 - 1 - Multiple Features (8 min).mp4 | 8.84 MB |
| | 4 - 1 - Multiple Features (8 min).srt | 14.55 KB |
| | 4 - 2 - Gradient Descent for Multiple Variables (5 min).mp4 | 5.78 MB |
| | 4 - 2 - Gradient Descent for Multiple Variables (5 min).srt | 6.63 KB |
| | 4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mp4 | 9.46 MB |
| | 4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).srt | 17 KB |
| | 4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mp4 | 9.26 MB |
| | 4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).srt | 18.49 KB |
| | 4 - 5 - Features and Polynomial Regression (8 min).mp4 | 8.26 MB |
| | 4 - 5 - Features and Polynomial Regression (8 min).srt | 15.9 KB |
| | 9 - 1 - Cost Function (7 min).mp4 | 7.66 MB |
| | 9 - 1 - Cost Function (7 min).srt | 13.16 KB |
| | 9 - 2 - Backpropagation Algorithm (12 min).mp4 | 13.94 MB |
| | 9 - 2 - Backpropagation Algorithm (12 min).srt | 22.83 KB |
| | 9 - 3 - Backpropagation Intuition (13 min).mp4 | 15.44 MB |
| | 9 - 3 - Backpropagation Intuition (13 min).srt | 24.96 KB |
| | 9 - 4 - Implementation Note Unrolling Parameters (8 min).mp4 | 9.38 MB |
| | 9 - 4 - Implementation Note- Unrolling Parameters (8 min).srt | 14.9 KB |
| | 9 - 5 - Gradient Checking (12 min).mp4 | 13.5 MB |
| | 9 - 5 - Gradient Checking (12 min).srt | 23.58 KB |
| | 5 - 1 - Basic Operations (14 min).mp4 | 17.72 MB |
| | 5 - 1 - Basic Operations (14 min).srt | 25.35 KB |
| | 5 - 2 - Moving Data Around (16 min).mp4 | 20.77 MB |
| | 5 - 2 - Moving Data Around (16 min).srt | 28.61 KB |
| | 5 - 3 - Computing on Data (13 min).mp4 | 15.25 MB |
| | 5 - 3 - Computing on Data (13 min).srt | 24.95 KB |
| | 5 - 4 - Plotting Data (10 min).mp4 | 13.32 MB |
| | 5 - 4 - Plotting Data (10 min).srt | 17.36 KB |
| | 5 - 5 - Control Statements for while if statements (13 min).mp4 | 16.49 MB |
| | 5 - 5 - Control Statements- for, while, if statements (13 min).srt | 23.38 KB |
| | 6 - 1 - Classification (8 min).mp4 | 8.77 MB |
| | 6 - 1 - Classification (8 min).srt | 16.18 KB |
| | 6 - 2 - Hypothesis Representation (7 min).mp4 | 8.34 MB |
| | 6 - 2 - Hypothesis Representation (7 min).srt | 14.15 KB |
| | 6 - 3 - Decision Boundary (15 min).mp4 | 16.74 MB |
| | 6 - 3 - Decision Boundary (15 min).srt | 26.75 KB |
| | 6 - 4 - Cost Function (11 min).mp4 | 13.09 MB |
| | 6 - 4 - Cost Function (11 min).srt | 22.17 KB |
| | 6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mp4 | 11.96 MB |
| | 6 - 5 - Simplified Cost Function and Gradient Descent (10 min).srt | 19.58 KB |
| | 7 - 1 - The Problem of Overfitting (10 min).mp4 | 11.15 MB |
| | 7 - 1 - The Problem of Overfitting (10 min).srt | 19.26 KB |
| | 7 - 2 - Cost Function (10 min).mp4 | 11.63 MB |
| | 7 - 2 - Cost Function (10 min).srt | 19.73 KB |
| | 7 - 3 - Regularized Linear Regression (11 min).mp4 | 12 MB |
| | 7 - 3 - Regularized Linear Regression (11 min).srt | 20.37 KB |
| | 7 - 4 - Regularized Logistic Regression (9 min).mp4 | 10.89 MB |
| | 7 - 4 - Regularized Logistic Regression (9 min).srt | 17.16 KB |
| | docs_slides_Lecture7.pdf | 2.34 MB |
| | docs_slides_Lecture7.pptx | 2.59 MB |
| | ex2.zip | 243.02 KB |
| | 8 - 1 - Non-linear Hypotheses (10 min).mp4 | 10.88 MB |
| | 8 - 1 - Non-linear Hypotheses (10 min).srt | 19.05 KB |
| | 8 - 2 - Neurons and the Brain (8 min).mp4 | 9.89 MB |
| | 8 - 2 - Neurons and the Brain (8 min).srt | 16.41 KB |
| | 8 - 3 - Model Representation I (12 min).mp4 | 13.51 MB |
| | 8 - 3 - Model Representation I (12 min).srt | 21.6 KB |
| | 8 - 4 - Model Representation II (12 min).mp4 | 13.45 MB |
| | 8 - 4 - Model Representation II (12 min).srt | 22.43 KB |
| | 8 - 5 - Examples and Intuitions I (7 min).mp4 | 7.89 MB |
| | 8 - 5 - Examples and Intuitions I (7 min).srt | 13.05 KB |
| | 10 - 1 - Deciding What to Try Next (6 min).mp4 | 6.86 MB |
| | 10 - 1 - Deciding What to Try Next (6 min).srt | 12.44 KB |
| | 10 - 2 - Evaluating a Hypothesis (8 min).mp4 | 8.48 MB |
| | 10 - 2 - Evaluating a Hypothesis (8 min).srt | 11.5 KB |
| | 10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).mp4 | 14.07 MB |
| | 10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).srt | 24.64 KB |
| | 10 - 4 - Diagnosing Bias vs. Variance (8 min).mp4 | 8.97 MB |
| | 10 - 4 - Diagnosing Bias vs. Variance (8 min).srt | 16.14 KB |
| | 10 - 5 - Regularization and Bias_Variance (11 min).mp4 | 12.6 MB |
| | 10 - 5 - Regularization and Bias_Variance (11 min).srt | 22.54 KB |
| | 11 - 1 - Prioritizing What to Work On (10 min).mp4 | 11.17 MB |
| | 11 - 1 - Prioritizing What to Work On (10 min).srt | 19.66 KB |
| | 11 - 2 - Error Analysis (13 min).mp4 | 15.43 MB |
| | 11 - 2 - Error Analysis (13 min).srt | 27.47 KB |
| | 11 - 3 - Error Metrics for Skewed Classes (12 min).mp4 | 13.25 MB |
| | 11 - 3 - Error Metrics for Skewed Classes (12 min).srt | 22.06 KB |
| | 11 - 4 - Trading Off Precision and Recall (14 min).mp4 | 15.99 MB |
| | 11 - 4 - Trading Off Precision and Recall (14 min).srt | 28.59 KB |
| | 11 - 5 - Data For Machine Learning (11 min).mp4 | 12.87 MB |
| | 11 - 5 - Data For Machine Learning (11 min).srt | 23.16 KB |
| | 12 - 1 - Optimization Objective (15 min).mp4 | 16.65 MB |
| | 12 - 1 - Optimization Objective (15 min).srt | 29.43 KB |
| | 12 - 2 - Large Margin Intuition (11 min).mp4 | 11.81 MB |
| | 12 - 2 - Large Margin Intuition (11 min).srt | 21.28 KB |
| | 12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mp4 | 21.83 MB |
| | 12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).srt | 35.87 KB |
| | 12 - 4 - Kernels I (16 min).mp4 | 17.57 MB |
| | 12 - 4 - Kernels I (16 min).srt | 29.07 KB |
| | 12 - 5 - Kernels II (16 min) (1).mp4 | 17.45 MB |
| | 12 - 5 - Kernels II (16 min) (1).srt | 30.67 KB |
| | 13 - 1 - Unsupervised Learning Introduction (3 min).mp4 | 3.8 MB |
| | 13 - 1 - Unsupervised Learning- Introduction (3 min).srt | 6.99 KB |
| | 13 - 2 - K-Means Algorithm (13 min).mp4 | 13.81 MB |
| | 13 - 2 - K-Means Algorithm (13 min).srt | 26.24 KB |
| | 13 - 3 - Optimization Objective (7 min).mp4 | 8.15 MB |
| | 13 - 3 - Optimization Objective (7 min).srt | 13.7 KB |
| | 13 - 4 - Random Initialization (8 min).mp4 | 8.67 MB |
| | 13 - 4 - Random Initialization (8 min).srt | 16.23 KB |
| | 13 - 5 - Choosing the Number of Clusters (8 min).mp4 | 9.4 MB |
| | 13 - 5 - Choosing the Number of Clusters (8 min).srt | 17.94 KB |
| | 14 - 1 - Motivation I Data Compression (10 min).mp4 | 14.31 MB |
| | 14 - 1 - Motivation I- Data Compression (10 min).srt | 20.14 KB |
| | 14 - 2 - Motivation II Visualization (6 min).mp4 | 6.3 MB |
| | 14 - 2 - Motivation II- Visualization (6 min).srt | 10.18 KB |
| | 14 - 3 - Principal Component Analysis Problem Formulation (9 min).mp4 | 10.45 MB |
| | 14 - 3 - Principal Component Analysis Problem Formulation (9 min).srt | 18.42 KB |
| | 14 - 4 - Principal Component Analysis Algorithm (15 min).mp4 | 17.79 MB |
| | 14 - 4 - Principal Component Analysis Algorithm (15 min).srt | 28.58 KB |
| | 14 - 5 - Choosing the Number of Principal Components (11 min).mp4 | 11.84 MB |
| | 14 - 5 - Choosing the Number of Principal Components (11 min).srt | 21.14 KB |
| | 19 - 1 - Summary and Thank You (5 min).mp4 | 6.09 MB |
| | 19 - 1 - Summary and Thank You (5 min).srt | 8.08 KB |
| | 15 - 1 - Problem Motivation (8 min).mp4 | 8.35 MB |
| | 15 - 1 - Problem Motivation (8 min).srt | 16.02 KB |
| | 15 - 2 - Gaussian Distribution (10 min).mp4 | 11.69 MB |
| | 15 - 2 - Gaussian Distribution (10 min).srt | 20.64 KB |
| | 15 - 3 - Algorithm (12 min).mp4 | 13.95 MB |
| | 15 - 3 - Algorithm (12 min).srt | 23.49 KB |
| | 15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mp4 | 15.15 MB |
| | 15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).srt | 27.29 KB |
| | 15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mp4 | 9.28 MB |
| | 15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).srt | 16.42 KB |
| | 16 - 1 - Problem Formulation (8 min).mp4 | 10.67 MB |
| | 16 - 1 - Problem Formulation (8 min).srt | 16.82 KB |
| | 16 - 2 - Content Based Recommendations (15 min).mp4 | 16.93 MB |
| | 16 - 2 - Content Based Recommendations (15 min).srt | 28.57 KB |
| | 16 - 3 - Collaborative Filtering (10 min).mp4 | 11.75 MB |
| | 16 - 3 - Collaborative Filtering (10 min).srt | 20.24 KB |
| | 16 - 4 - Collaborative Filtering Algorithm (9 min).mp4 | 10.31 MB |
| | 16 - 4 - Collaborative Filtering Algorithm (9 min).srt | 16.49 KB |
| | 16 - 5 - Vectorization Low Rank Matrix Factorization (8 min).mp4 | 9.68 MB |
| | 16 - 5 - Vectorization- Low Rank Matrix Factorization (8 min).srt | 16.31 KB |
| | 17 - 1 - Learning With Large Datasets (6 min).mp4 | 6.5 MB |
| | 17 - 1 - Learning With Large Datasets (6 min).srt | 7.86 KB |
| | 17 - 2 - Stochastic Gradient Descent (13 min).mp4 | 15.33 MB |
| | 17 - 2 - Stochastic Gradient Descent (13 min).srt | 18.15 KB |
| | 17 - 3 - Mini-Batch Gradient Descent (6 min).mp4 | 7.32 MB |
| | 17 - 3 - Mini-Batch Gradient Descent (6 min).srt | 7.78 KB |
| | 17 - 4 - Stochastic Gradient Descent Convergence (12 min).mp4 | 13.33 MB |
| | 17 - 4 - Stochastic Gradient Descent Convergence (12 min).srt | 16.16 KB |
| | 17 - 5 - Online Learning (13 min).mp4 | 14.91 MB |
| | 17 - 5 - Online Learning (13 min).srt | 27.68 KB |
| | 18 - 1 - Problem Description and Pipeline (7 min).mp4 | 7.91 MB |
| | 18 - 1 - Problem Description and Pipeline (7 min).srt | 14.71 KB |
| | 18 - 2 - Sliding Windows (15 min).mp4 | 16.52 MB |
| | 18 - 2 - Sliding Windows (15 min).srt | 31.47 KB |
| | 18 - 3 - Getting Lots of Data and Artificial Data (16 min).mp4 | 18.82 MB |
| | 18 - 3 - Getting Lots of Data and Artificial Data (16 min).srt | 35.19 KB |
| | 18 - 4 - Ceiling Analysis What Part of the Pipeline to Work on Next (14 min).mp4 | 16.11 MB |
| | 18 - 4 - Ceiling Analysis- What Part of the Pipeline to Work on Next (14 min).srt | 30.5 KB |
| | docs_slides_Lecture18.pdf | 1.97 MB |
| | docs_slides_Lecture18.pptx | 6.13 MB |